IDEAS home Printed from https://ideas.repec.org/a/taf/rpstxx/v72y2018i2p191-200.html
   My bibliography  Save this article

A mortality model based on a mixture distribution function

Author

Listed:
  • Stefano Mazzuco
  • Bruno Scarpa
  • Lucia Zanotto

Abstract

A new mortality model based on a mixture distribution function is proposed. We mix a half-normal distribution with a generalization of the skew-normal distribution. As a result, we get a six-parameter distribution function that has a good fit with a wide variety of mortality patterns. This mixture model is fitted to several mortality data schedules and compared with the Siler (five-parameter) and Heligman–Pollard (eight-parameter) models. Our proposal serves as a convenient compromise between the Heligman–Pollard model (which ensures a good fit with data but is often overparameterized) and the Siler model (which is more compact but fails to capture ‘accident humps’).

Suggested Citation

  • Stefano Mazzuco & Bruno Scarpa & Lucia Zanotto, 2018. "A mortality model based on a mixture distribution function," Population Studies, Taylor & Francis Journals, vol. 72(2), pages 191-200, May.
  • Handle: RePEc:taf:rpstxx:v:72:y:2018:i:2:p:191-200
    DOI: 10.1080/00324728.2018.1439519
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00324728.2018.1439519
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00324728.2018.1439519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia Zanotto & Vladimir Canudas-Romo & Stefano Mazzuco, 2021. "A Mixture-Function Mortality Model: Illustration of the Evolution of Premature Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 1-27, March.
    2. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    3. Emanuele Aliverti & Stefano Mazzuco & Bruno Scarpa, 2022. "Dynamic modelling of mortality via mixtures of skewed distribution functions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1030-1048, July.
    4. Lanfiuti Baldi, Giacomo & NIGRI, ANDREA, 2023. "An Age-Period-Cohort model for gender gap in youth mortality," OSF Preprints z3qmw, Center for Open Science.
    5. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rpstxx:v:72:y:2018:i:2:p:191-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rpst20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.