IDEAS home Printed from https://ideas.repec.org/a/taf/rpanxx/v11y2011i3p575-582.html
   My bibliography  Save this article

Predicting 30 m timing gate speed from a 5 Hz Global Positioning System (GPS) device

Author

Listed:
  • Mark Waldron
  • Paul Worsfold
  • Craig Twist
  • Kevin Lamb

Abstract

The measurement of over-ground human locomotion using global positioning systems (GPS) has many potential research applications, one of which is the assessment of linear sprint performance. Although recent studies have reported 5 Hz systems to underestimate speed determined by infra-red timing gates, which are commonly used to assess linear speed over brief 10 to 30 m intervals, the magnitude and direction of error are yet to be clarified. Therefore, the purpose of this study was to (i) evaluate the concurrent validity between a 5 Hz GPS and timing gates for measuring mean speed over 30 m and (ii) examine whether regression analysis could yield an accurate model to predict over-ground speed from GPS values. Sixty elite team sport participants (age: 14.2 ± 0.67 years; stature: 171.6 ± 9.8 cm; body mass: 66.1 ± 12.9 kg) performed one maximal sprint over a 30 m distance and were concurrently measured using a 5 Hz GPS device and infra-red timing gates. Analysis of the mean speeds calculated revealed a significant correlation (r = 0.85, P<0.05) between the measures, but a systematic underestimation of 1.96 km·h-1 (P<0.05) by the GPS (20.89 km·h-1) of the values from the timing gates (22.85 km·h-1). Multiple linear regression analysis, incorporating mean and peak GPS speeds as independent variables, yielded an adjusted R2 of 0.84 (SEE = 0.49 km·h-1) and the equation; timing gate speed = 2.869 + [(0.246 × mean GPS speed) + (0.497 × peak GPS speed)]. On this basis, it is suggested that amongst sportsmen such as these, the current GPS prediction model can provide a valid alternative to timing gates in the assessment of sprint performance over 30 m.

Suggested Citation

  • Mark Waldron & Paul Worsfold & Craig Twist & Kevin Lamb, 2011. "Predicting 30 m timing gate speed from a 5 Hz Global Positioning System (GPS) device," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 11(3), pages 575-582, December.
  • Handle: RePEc:taf:rpanxx:v:11:y:2011:i:3:p:575-582
    DOI: 10.1080/24748668.2011.11868575
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24748668.2011.11868575
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24748668.2011.11868575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rpanxx:v:11:y:2011:i:3:p:575-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RPAN20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.