IDEAS home Printed from https://ideas.repec.org/a/taf/rjusxx/v28y2024i3p379-402.html
   My bibliography  Save this article

A machine learning application to Google Maps Reviews as a participatory planning tool

Author

Listed:
  • Melike Akkaya
  • Özlem Özçevik
  • Emre Tepe

Abstract

Public participation is vital to achieving successful plan outcomes, whereas meaningful participation requires at least informing and consulting the public. However, collecting frequent feedback from the public is a labour-intensive process. Information technologies like Google Maps Reviews offer to collect extensive public inputs by allowing users to share their feedback and ratings about services. Machine learning methods are ideal for analyzing these reviews to understand users’ experiences. This study proposes a machine learning application using Google Maps Reviews to examine feedback on the selected parks in Istanbul, Türkiye. Reviews provide insights into not only park features but also its social structure. The introduced method supports surveys and interview methods preferred by planners.

Suggested Citation

  • Melike Akkaya & Özlem Özçevik & Emre Tepe, 2024. "A machine learning application to Google Maps Reviews as a participatory planning tool," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 28(3), pages 379-402, July.
  • Handle: RePEc:taf:rjusxx:v:28:y:2024:i:3:p:379-402
    DOI: 10.1080/12265934.2024.2320916
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/12265934.2024.2320916
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/12265934.2024.2320916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjusxx:v:28:y:2024:i:3:p:379-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjus20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.