Author
Listed:
- Hyun-Min Hwang
- Matthew J. Fiala
- Terry L. Wade
- Dongjoo Park
Abstract
Urban road dust is highly enriched with organic pollutants such as polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons, and herbicides that are released primarily from vehicles and/or road management practices. Analysis of sediment cores from urban watersheds clearly demonstrates that increase of pollutant input correlates with traffic volume increase. Pollutants in urban road dust are a significant threat to the health of aquatic organisms. Contaminated urban road dust is mobilized by stormwater runoff and transported into local receiving waterbodies (e.g. streams, rivers, lakes, and estuaries). Concentrations of PAHs in sediments receiving stormwater runoff from densely populated urban areas are high enough to impair the health of aquatic organisms and frequently exceed sediment quality guidelines. To restore streams and rivers impaired by roadway runoff, concentrations of pollutants in road dust need to be reduced through implementing a combination of regulatory policies and management actions. One approach would be to phase out existing pollutant sources such instituting a ban on the use of coal tar-based asphalt road seal coat containing high levels of PAHs. Instituting the use of environment friendly natural herbicides with only spot treatment to target weeds rather than broadcast application and restoration of native vegetation, as integrated roadside vegetation management programs. Adoption of these practices would result in significantly reduced herbicide contamination of roadway stormwater runoff. An alternate option is the removal of contaminants from stormwater runoff before they are delivered to receiving waterbodies using best management practices (BMP) such as retention ponds, detention basins, and grass swales. In densely populated urban areas, however, these BMPs may not be easily adopted due to multiple constraints such as lack of spaces and high land cost. In this case, proprietary BMPs such as media filter, wet vault, and vortex separator, which are also known as manufactured treatment devices, can be considered.
Suggested Citation
Hyun-Min Hwang & Matthew J. Fiala & Terry L. Wade & Dongjoo Park, 2019.
"Review of pollutants in urban road dust: Part II. Organic contaminants from vehicles and road management,"
International Journal of Urban Sciences, Taylor & Francis Journals, vol. 23(4), pages 445-463, October.
Handle:
RePEc:taf:rjusxx:v:23:y:2019:i:4:p:445-463
DOI: 10.1080/12265934.2018.1538811
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjusxx:v:23:y:2019:i:4:p:445-463. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjus20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.