Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion
Author
Abstract
Suggested Citation
DOI: 10.1080/12265934.2017.1284607
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Manfred M. Fischer, 2006. "Spatial Analysis and GeoComputation," Springer Books, Springer, number 978-3-540-35730-8, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Muhammad Fahad Baqa & Fang Chen & Linlin Lu & Salman Qureshi & Aqil Tariq & Siyuan Wang & Linhai Jing & Salma Hamza & Qingting Li, 2021. "Monitoring and Modeling the Patterns and Trends of Urban Growth Using Urban Sprawl Matrix and CA-Markov Model: A Case Study of Karachi, Pakistan," Land, MDPI, vol. 10(7), pages 1-17, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Richard Harris & David O’Sullivan & Mark Gahegan & Martin Charlton & Lex Comber & Paul Longley & Chris Brunsdon & Nick Malleson & Alison Heppenstall & Alex Singleton & Daniel Arribas-Bel & Andy Evan, 2017. "More bark than bytes? Reflections on 21+ years of geocomputation," Environment and Planning B, , vol. 44(4), pages 598-617, July.
- Carlos García-Alonso & Leonor Pérez-Naranjo & Juan Fernández-Caballero, 2014. "Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms," Annals of Operations Research, Springer, vol. 219(1), pages 187-202, August.
- Paula Simões & M. Lucília Carvalho & Sandra Aleixo & Sérgio Gomes & Isabel Natário, 2017. "A Spatial Econometric Analysis of the Calls to the Portuguese National Health Line," Econometrics, MDPI, vol. 5(2), pages 1-23, June.
- Juliana Mio de Souza & Paulo Morgado & Eduarda Marques da Costa & Luiz Fernando de Novaes Vianna, 2022. "Modeling of Land Use and Land Cover (LULC) Change Based on Artificial Neural Networks for the Chapecó River Ecological Corridor, Santa Catarina/Brazil," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjusxx:v:21:y:2017:i:2:p:217-237. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjus20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.