Author
Listed:
- Xinyu Fu
- Ruoniu Wang
- Chaosu Li
Abstract
Problem, research strategy, and findingsLarge language models, such as ChatGPT, have recently risen to prominence in producing human-like conversation and assisting with various tasks, particularly for analyzing high-dimensional textual materials. Because planning researchers and practitioners often need to evaluate planning documents that are long and complex, a first-ever possible question has emerged: Can ChatGPT evaluate plans? In this study we addressed this question by leveraging ChatGPT to evaluate the quality of plans and compare the results with those conducted by human coders. Through the evaluation of 10 climate change plans, we discovered that ChatGPT’s evaluation results coincided reasonably well (with an average of 68%) with those from the traditional content analysis approach. We further scrutinized the differences by conducting a more in-depth analysis of the results from ChatGPT and manual evaluation to uncover what might have contributed to the variance in results. Our findings indicate that ChatGPT struggled to comprehend planning-specific jargon, yet it could reduce human errors by capturing details in complex planning documents. Finally, we provide insights into leveraging this cutting-edge technology in future planning research and practice.Takeaway for practiceChatGPT cannot be used to replace humans in plan quality evaluation yet. However, it is an effective tool to complement human coders to minimize human errors by identifying discrepancies and fact-checking machine-generated responses. ChatGPT generally cannot understand planning jargon, so planners wanting to use this tool should use extra caution when planning terminologies are present in their prompts. Creating effective prompts for ChatGPT is an iterative process that requires specific instructions.
Suggested Citation
Xinyu Fu & Ruoniu Wang & Chaosu Li, 2024.
"Can ChatGPT Evaluate Plans?,"
Journal of the American Planning Association, Taylor & Francis Journals, vol. 90(3), pages 525-536, July.
Handle:
RePEc:taf:rjpaxx:v:90:y:2024:i:3:p:525-536
DOI: 10.1080/01944363.2023.2271893
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjpaxx:v:90:y:2024:i:3:p:525-536. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjpa20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.