Author
Listed:
- Robert Zenzerović
- Josip Šajrih
Abstract
Contemporary research among fraud professionals indicates that organizations lose 5% of revenues from fraud every year which makes the research in this area and the derivation of fraud detection models very important. The purpose of the article is to develop a new accounting tool that will help companies and investors in prompt fraud detection and prevention which can finally result in the preservation of financial stability as well as more efficient capital allocation. In this context the main objective of the research is to test the significance of some financial statements positions’ relations that has not been used in the previous research using the dataset from SEC AAERs presented and included in Bao et al.’s research as well as to combine them with existing ones and consequently develop new financial statement fraud detection model. Another objective consists of presenting some of the most significant and contemporary research in the field of financial statement fraud detection models and comparing their quality using the ROC analysis. Research results were generated by using the SMOTE algorithm and logistic regression analysis on the dataset of 146,045 cases for a period from 1982 to 2014 and point out five independent variables used by Bao et al. The financial statement fraud detection model comprised of change in free cash flow, percentage of soft assets, sale of common and preferred stock, change in cash sales, and change in receivables shows a sufficient level of discriminant power with 67% area under ROC curve. The model derived could be used as a starting point for fraud detection preventing the significant losses the company and stakeholders could face.
Suggested Citation
Robert Zenzerović & Josip Šajrih, 2023.
"Financial statements fraud identifiers,"
Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 36(3), pages 2218916-221, December.
Handle:
RePEc:taf:reroxx:v:36:y:2023:i:3:p:2218916
DOI: 10.1080/1331677X.2023.2218916
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:reroxx:v:36:y:2023:i:3:p:2218916. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rero .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.