IDEAS home Printed from https://ideas.repec.org/a/taf/reroxx/v32y2019i1p1922-1943.html
   My bibliography  Save this article

Probability weighting functions obtained from Hong Kong index option market

Author

Listed:
  • Xinyu Wu
  • Haibin Xie
  • Xindan Li

Abstract

In this paper we estimate the pricing kernel from the Hong Kong index option market and obtain the empirical probability weighting functions based on the rank-dependent expected utility. The empirical pricing kernel is estimated semi-parametrically as the ratio of the risk-neutral and objective densities. We employ a two-step estimation procedure to estimate the objective and risk-neutral densities under a consistent parametric framework of the non-affine generalised autoregressive conditional heteroskedasticity (G.A.R.C.H.) diffusion model. In the first step, we develop a continuous particle filters-based maximum likelihood estimation method to estimate the objective parameters of the G.A.R.C.H. diffusion model using the Hang Seng Index (H.S.I.) returns. In the second step of our estimation, we depart from the usual pure calibration approach and use the H.S.I. option prices to estimate the risk-neutral parameters of the G.A.R.C.H. diffusion model by constraining certain parameters to be consistent with the time-series behaviour of H.S.I. returns. Based on the estimated objective and risk-neutral parameters, the objective and risk-neutral densities are obtained by inverting the corresponding characteristic functions. Empirical results indicate that the empirical pricing kernel estimated from the Hong Kong index option market is non-monotonic and the estimated probability weighting functions are S-shaped, which implies that investors underweight small probability events and overweight large ones.

Suggested Citation

  • Xinyu Wu & Haibin Xie & Xindan Li, 2019. "Probability weighting functions obtained from Hong Kong index option market," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 32(1), pages 1922-1943, January.
  • Handle: RePEc:taf:reroxx:v:32:y:2019:i:1:p:1922-1943
    DOI: 10.1080/1331677X.2019.1638285
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1331677X.2019.1638285
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1331677X.2019.1638285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:reroxx:v:32:y:2019:i:1:p:1922-1943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rero .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.