IDEAS home Printed from https://ideas.repec.org/a/taf/rcitxx/v25y2022i14p2357-2376.html
   My bibliography  Save this article

Modelling expenditure in tourism using the log-skew normal distribution

Author

Listed:
  • E. Gómez–Déniz
  • N. Dávila-Cárdenes
  • J. Boza-Chirino

Abstract

Many factors are involved in tourist decision expenses. Such circumstances may give rise to some asymmetry in the distribution of tourism expenditure. We propose in this paper a reparameterization of the three-parameter log-skew normal distribution for modelling the expenditure at the country of origin, at destination, and total expenditure in a tourism setting. This distribution seems to fit the expenditure data satisfactorily in all the parts of the empirical distribution. In particular, the proposed model is well suited to capture the skewness and kurtosis that may be present and the long tail to the right that the three variables mentioned above tend to present in practice.

Suggested Citation

  • E. Gómez–Déniz & N. Dávila-Cárdenes & J. Boza-Chirino, 2022. "Modelling expenditure in tourism using the log-skew normal distribution," Current Issues in Tourism, Taylor & Francis Journals, vol. 25(14), pages 2357-2376, July.
  • Handle: RePEc:taf:rcitxx:v:25:y:2022:i:14:p:2357-2376
    DOI: 10.1080/13683500.2021.1960282
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13683500.2021.1960282
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13683500.2021.1960282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rcitxx:v:25:y:2022:i:14:p:2357-2376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rcit .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.