Author
Listed:
- Yang Xu
- Xinyu Li
- Shih-Lung Shaw
- Feng Lu
- Ling Yin
- Bi Yu Chen
Abstract
Recent years have witnessed an increasing use of big data in mobility research. Such efforts have led to many insights on the travel behavior and activity patterns of people. Despite these achievements, the data veracity issue and its impact on the processes of knowledge discovery have seldom been discussed. In this research, we investigate the veracity issue of mobile signaling data (MSD) when they are used to characterize human mobility patterns. We first discuss the location uncertainty issues in MSD that would hinder accurate estimations of human mobility patterns, followed by an examination of two existing methods for addressing these issues (clustering-based method and time window–based method). We then propose a new approach that can overcome some of the limitations of these two methods. By applying all three methods to a large-scale mobile signaling data set, we find that the choice of preprocessing methods could lead to changes in the data characteristics. Such changes, which are nontrivial, will further affect the characterization and interpretation of human mobility patterns. By computing four mobility indicators (number of origin–destination trips, number of activity locations, total stay time, and activity entropy) from the outputs of the three methods, we illustrate their varying impacts on individual mobility estimations relevant to location uncertainty issues. Our analysis results call for more attention to the veracity issue in data-driven mobility research and its implications for replicability and reproducibility of geospatial research.
Suggested Citation
Yang Xu & Xinyu Li & Shih-Lung Shaw & Feng Lu & Ling Yin & Bi Yu Chen, 2020.
"Effects of Data Preprocessing Methods on Addressing Location Uncertainty in Mobile Signaling Data,"
Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 111(2), pages 515-539, July.
Handle:
RePEc:taf:raagxx:v:111:y:2020:i:2:p:515-539
DOI: 10.1080/24694452.2020.1773232
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:raagxx:v:111:y:2020:i:2:p:515-539. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/raag .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.