IDEAS home Printed from https://ideas.repec.org/a/taf/raagxx/v110y2020i2p408-420.html
   My bibliography  Save this article

Understanding Place Characteristics in Geographic Contexts through Graph Convolutional Neural Networks

Author

Listed:
  • Di Zhu
  • Fan Zhang
  • Shengyin Wang
  • Yaoli Wang
  • Ximeng Cheng
  • Zhou Huang
  • Yu Liu

Abstract

Inferring the unknown properties of a place relies on both its observed attributes and the characteristics of the places to which it is connected. Because place characteristics are unstructured and the metrics for place connections can be diverse, it is challenging to incorporate them in a spatial prediction task where the results could be affected by how the neighborhoods are delineated and where the true relevance among places is hard to identify. To bridge the gap, we introduce graph convolutional neural networks (GCNNs) to model places as a graph, where each place is formalized as a node, place characteristics are encoded as node features, and place connections are represented as the edges. GCNNs capture the knowledge of the relevant geographic context by optimizing the weights among graph neural network layers. A case study was designed in the Beijing metropolitan area to predict the unobserved place characteristics based on the observed properties and specific place connections. A series of comparative experiments was conducted to highlight the influence of different place connection measures on the prediction accuracy and to evaluate the predictability across different characteristic dimensions. This research enlightens the promising future of GCNNs in formalizing places for geographic knowledge representation and reasoning.

Suggested Citation

  • Di Zhu & Fan Zhang & Shengyin Wang & Yaoli Wang & Ximeng Cheng & Zhou Huang & Yu Liu, 2020. "Understanding Place Characteristics in Geographic Contexts through Graph Convolutional Neural Networks," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 110(2), pages 408-420, March.
  • Handle: RePEc:taf:raagxx:v:110:y:2020:i:2:p:408-420
    DOI: 10.1080/24694452.2019.1694403
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24694452.2019.1694403
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24694452.2019.1694403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Fan & Yang Yang & Ali Mostafavi, 2024. "Neural embeddings of urban big data reveal spatial structures in cities," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    2. Pengyuan Liu & Yan Zhang & Filip Biljecki, 2024. "Explainable spatially explicit geospatial artificial intelligence in urban analytics," Environment and Planning B, , vol. 51(5), pages 1104-1123, June.
    3. Zhi Li & Jinsong Liu, 2023. "Evolution Process and Characteristics of Multifactor Flows in Rural Areas: A Case Study of Licheng Village in Hebei, China," Sustainability, MDPI, vol. 15(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:raagxx:v:110:y:2020:i:2:p:408-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/raag .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.