IDEAS home Printed from https://ideas.repec.org/a/taf/raagxx/v108y2018i5p1260-1279.html
   My bibliography  Save this article

Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network

Author

Listed:
  • Heng Cai
  • Nina S. N. Lam
  • Lei Zou
  • Yi Qiang

Abstract

Studies on how variables of community resilience to natural hazards interact as a system that affects the final resilience (i.e., their dynamical linkages) have rarely been conducted. Bayesian network (BN), which represents the interdependencies among variables in a graph while expressing the uncertainty in the form of probability distributions, offers an effective way to investigate the interactions among different resilience components and addresses the natural–human system as a whole. This article employs a BN to study the interdependencies of ten resilience variables and population change in the Lower Mississippi River Basin (LMRB) at the census block group scale. A genetic algorithm was used to identify an optimal BN where population change, a cumulative resilience indicator, was the target variable. The genetic algorithm yielded an optimized BN model with a cross-validation accuracy of 67 percent over a period of 906 generations. Six variables were found to have direct impacts on population change, including level of threat from coastal hazards, hazard damage, distance to coastline, employment rate, percentage of housing units built before 1970, and percentage of households with a female householder. The remaining four variables were indirect variables, including percentage agriculture land, percentage flood zone area, percentage owner-occupied house units, and population density. Each variable has a conditional probability table so that its impacts on the probability of population change can be evaluated as it propagates through the network. These probabilities could be used for scenario modeling to help inform policies to reduce vulnerability and enhance disaster resilience.

Suggested Citation

  • Heng Cai & Nina S. N. Lam & Lei Zou & Yi Qiang, 2018. "Modeling the Dynamics of Community Resilience to Coastal Hazards Using a Bayesian Network," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(5), pages 1260-1279, September.
  • Handle: RePEc:taf:raagxx:v:108:y:2018:i:5:p:1260-1279
    DOI: 10.1080/24694452.2017.1421896
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24694452.2017.1421896
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24694452.2017.1421896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heng Cai & Nina S. N. Lam & Lei Zou, 2022. "Incorporating neighborhood scale effects into land loss modeling using semivariograms," Journal of Geographical Systems, Springer, vol. 24(3), pages 419-439, July.
    2. Zhao, Qunshan & Li, Ziqi & Shah, Dhrumil & Fischer, Heather & Solís, Patricia & Wentz, Elizabeth, 2021. "Understanding the Interaction between Human Activities and Physical Health under Extreme Heat Environment in Phoenix, Arizona," OSF Preprints vycmq, Center for Open Science.
    3. Goerlandt, Floris & Islam, Samsul, 2021. "A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Beth Tellman & Cody Schank & Bessie Schwarz & Peter D. Howe & Alex de Sherbinin, 2020. "Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA," Sustainability, MDPI, vol. 12(15), pages 1-28, July.
    5. Elkady, Sahar & Hernantes, Josune & Labaka, Leire, 2023. "Towards a resilient community: A decision support framework for prioritizing stakeholders' interaction areas," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:raagxx:v:108:y:2018:i:5:p:1260-1279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/raag .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.