IDEAS home Printed from https://ideas.repec.org/a/taf/raagxx/v104y2014i6p1116-1133.html
   My bibliography  Save this article

NMMI: A Mass Compactness Measure for Spatial Pattern Analysis of Areal Features

Author

Listed:
  • Wenwen Li
  • Tingyong Chen
  • Elizabeth A. Wentz
  • Chao Fan

Abstract

Spatial pattern analysis plays an important role in geography for understanding geographical phenomena, identifying causes, and predicting future trends. Traditional pattern analysis tools assess cluster or dispersed patterns of geographical features based on the distribution of nonspatial attributes. These metrics ignore the shape of spatial objects—a critical consideration. The study of shape analysis, on the other hand, measures the compactness, elongation, or convexity of an areal feature based merely on geometry, without considering patterns of its attribute distribution. This article reports our efforts in developing a new pattern analysis method called the normalized mass moment of inertia (NMMI) that integrates both shape and nonspatial attributes into the analysis of compactness patterns. The NMMI is based on a well-known concept in physics—the mass moment of inertia—and is capable of detecting the degree of concentration or diffusion of some continuous attribute on an areal feature. We termed this the mass compactness. This measure can be reduced to a shape compactness measure when the attribute is evenly distributed on the feature. We first describe the theoretical model of the NMMI and its computation and then demonstrate its good performance through a series of experiments. We further discuss potentially broad applications of this approach in the contexts of urban expansion and political districting. In the political districting context, higher NMMI of a congressional district suggests a lower degree of gerrymander and vice versa. This work makes an original and unique contribution to spatial pattern and shape analysis by introducing this new, effective, and efficient measure of mass compactness that accounts for both geometric and spatial distribution.

Suggested Citation

  • Wenwen Li & Tingyong Chen & Elizabeth A. Wentz & Chao Fan, 2014. "NMMI: A Mass Compactness Measure for Spatial Pattern Analysis of Areal Features," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(6), pages 1116-1133, November.
  • Handle: RePEc:taf:raagxx:v:104:y:2014:i:6:p:1116-1133
    DOI: 10.1080/00045608.2014.941732
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00045608.2014.941732
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00045608.2014.941732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Ricca & Ilaria Guagliardi, 2023. "Evidences of Soil Consumption Dynamics over Space and Time by Data Analysis in a Southern Italy Urban Sprawling Area," Land, MDPI, vol. 12(5), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:raagxx:v:104:y:2014:i:6:p:1116-1133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/raag .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.