IDEAS home Printed from https://ideas.repec.org/a/taf/raagxx/v104y2014i3p485-509.html
   My bibliography  Save this article

Global Sensitivity Analysis of a Large Agent-Based Model of Spatial Opinion Exchange: A Heterogeneous Multi-GPU Acceleration Approach

Author

Listed:
  • Wenwu Tang
  • Meijuan Jia

Abstract

Sensitivity analysis is an important step in agent-based modeling of complex adaptive spatial systems to evaluate the contribution of influential variables to model response. Sensitivity analysis of agent-based models is computationally demanding, however, and this analysis tends to be intractable for large agent-based modeling. This computational challenge greatly limits our ability to investigate complex spatial dynamics using large agent-based models. The objective of this study is to gain insight into this computational issue by focusing on the sensitivity analysis of large agent-based modeling of spatial opinion exchange, accelerated using multiple graphics processing units (GPUs). We present a heterogeneous parallel computing approach based on nested parallelism for the global sensitivity analysis of the model. The agent-based opinion model is parallelized using many-core GPUs for the simulation of a large number of spatially aware and interacting agents. These agents exchange opinions for developing consensus on topics through processes of spatial neighborhood search and opinion update. Global sensitivity analysis of the opinion model is conducted using a variance-based approach, requiring numerous model runs for Monte Carlo integration. Intermodel parallelization is introduced to enable Monte Carlo runs of sensitivity analysis. We conduct global sensitivity analysis on a multi-GPU cluster. Experimental results indicate GPU-accelerated general-purpose computation provides an efficacious and feasible solution for the sensitivity analysis of large agent-based models. The heterogeneous parallel computing approach provides valuable insight into large-scale spatiotemporal problem solving by leveraging cyberinfrastructure-enabled computational capabilities.

Suggested Citation

  • Wenwu Tang & Meijuan Jia, 2014. "Global Sensitivity Analysis of a Large Agent-Based Model of Spatial Opinion Exchange: A Heterogeneous Multi-GPU Acceleration Approach," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(3), pages 485-509, May.
  • Handle: RePEc:taf:raagxx:v:104:y:2014:i:3:p:485-509
    DOI: 10.1080/00045608.2014.892342
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00045608.2014.892342
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00045608.2014.892342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenwu Tang & Minrui Zheng & Xiang Zhao & Jiyang Shi & Jianxin Yang & Carl C. Trettin, 2018. "Big Geospatial Data Analytics for Global Mangrove Biomass and Carbon Estimation," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    2. Song, Minseok & Choe, Song-Yul, 2022. "Parameter sensitivity analysis of a reduced-order electrochemical-thermal model for heat generation rate of lithium-ion batteries," Applied Energy, Elsevier, vol. 305(C).
    3. Lee, Ju-Sung & Filatova, Tatiana & Ligmann-Zielinska, Arika & Hassani-Mahmooei, Behrooz & Stonedahl, Forrest & Lorscheid, Iris & Voinov, Alexey & Polhill, J. Gareth & Sun, Zhanli & Parker, Dawn C., 2015. "The complexities of agent-based modeling output analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(4).
    4. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:raagxx:v:104:y:2014:i:3:p:485-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/raag .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.