IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v8y2008i7p723-738.html
   My bibliography  Save this article

Detecting log-periodicity in a regime-switching model of stock returns

Author

Listed:
  • George Chang
  • James Feigenbaum

Abstract

Log-periodic precursors have been identified before most and perhaps all financial crashes of the Twentieth Century, but efforts to statistically validate the leading model of log-periodicity, the Johansen-Ledoit-Sornette (JLS) model, have generally failed. The main feature of this model is that log-harmonic fluctuations in financial prices are driven by similar fluctuations in expected daily returns. Here we search more broadly for evidence of any log-periodic variation in expected daily returns by estimating a regime-switching model of stock returns in which the mean return fluctuates between a high and a low value. We find such evidence prior to the two largest drawdowns in the S&P 500 since 1950. However, if we estimate a log-harmonic specification for the stock index for the same time periods, fixing the frequency and critical time according to the results of the regime-switching model, the parameters do not satisfy restrictions imposed by the JLS model.

Suggested Citation

  • George Chang & James Feigenbaum, 2008. "Detecting log-periodicity in a regime-switching model of stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 723-738.
  • Handle: RePEc:taf:quantf:v:8:y:2008:i:7:p:723-738
    DOI: 10.1080/14697680701689620
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680701689620
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680701689620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fry, J. M., 2010. "Gaussian and non-Gaussian models for financial bubbles via econophysics," MPRA Paper 27307, University Library of Munich, Germany.
    2. Giacomo Bormetti & Maria Elena De Giuli & Danilo Delpini & Claudia Tarantola, 2008. "Bayesian Analysis of Value-at-Risk with Product Partition Models," Papers 0809.0241, arXiv.org, revised May 2009.
    3. Fry, J. M., 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," MPRA Paper 16027, University Library of Munich, Germany.
    4. Pawel Dlotko & Simon Rudkin, 2019. "The Topology of Time Series: Improving Recession Forecasting from Yield Spreads," Working Papers 2019-02, Swansea University, School of Management.
    5. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    6. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    7. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    8. Fry, J. M., 2010. "Bubbles and crashes in finance: A phase transition from random to deterministic behaviour in prices," MPRA Paper 24778, University Library of Munich, Germany.
    9. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    10. Hsu, Yuan-Lin & Lin, Shih-Kuei & Hung, Ming-Chin & Huang, Tzu-Hui, 2016. "Empirical analysis of stock indices under a regime-switching model with dependent jump size risks," Economic Modelling, Elsevier, vol. 54(C), pages 260-275.
    11. Fry, J. M., 2009. "Bubbles and contagion in English house prices," MPRA Paper 17687, University Library of Munich, Germany.
    12. Giacomo Bormetti & Maria Elena De Giuli & Danilo Delpini & Claudia Tarantola, 2012. "Bayesian Value-at-Risk with product partition models," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 769-780, November.
    13. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    14. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    15. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanya Araújo & Miguel St. Aubyn, 2008. "Education, Neighborhood Effects And Growth: An Agent-Based Model Approach," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 99-117.
    2. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    4. Mikhail Anufriev & Giulio Bottazzi, 2005. "Price and Wealth Dynamics in a Speculative Market with an Arbitrary Number of Generic Technical Traders," LEM Papers Series 2005/06, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    6. Guo, Xu & McAleer, Michael & Wong, Wing-Keung & Zhu, Lixing, 2017. "A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 346-358.
    7. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    8. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    9. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424.
    10. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    11. Solomon Sorin & Golo Natasa, 2013. "Minsky Financial Instability, Interscale Feedback, Percolation and Marshall–Walras Disequilibrium," Accounting, Economics, and Law: A Convivium, De Gruyter, vol. 3(3), pages 167-260, October.
    12. G. Willis, 2004. "Laser Welfare: First Steps in Econodynamic Engineering," Papers cond-mat/0408227, arXiv.org.
    13. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    14. Anufriev, Mikhail & Dindo, Pietro, 2010. "Wealth-driven selection in a financial market with heterogeneous agents," Journal of Economic Behavior & Organization, Elsevier, vol. 73(3), pages 327-358, March.
    15. Jacques Tempere, 2018. "An equilibrium-conserving taxation scheme for income from capital," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(2), pages 1-6, February.
    16. Ribin Lye & James Peng Lung Tan & Siew Ann Cheong, 2012. "Understanding agent-based models of financial markets: a bottom-up approach based on order parameters and phase diagrams," Papers 1202.0606, arXiv.org.
    17. Giardina, Irene & Bouchaud, Jean-Philippe, 2003. "Volatility clustering in agent based market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 6-16.
    18. Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2016. "Forecasting stock market returns over multiple time horizons," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1695-1712, November.
    19. Mikhail Anufriev & Giulio Bottazzi, 2004. "Asset Pricing Model with Heterogeneous Investment Horizons," LEM Papers Series 2004/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Anufriev, M. & Bottazzi, G., 2006. "Price and Wealth Dynamics in a Speculative Market with Generic Procedurally Rational Traders," CeNDEF Working Papers 06-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:8:y:2008:i:7:p:723-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.