IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v7y2007i6p621-636.html
   My bibliography  Save this article

Value-at-risk forecasts under scrutiny—the German experience

Author

Listed:
  • Stefan Jaschke
  • Gerhard Stahl
  • Richard Stehle

Abstract

We present an analysis of the VaR forecasts and the P&L series of all 12 German banks that used internal models for regulatory purposes throughout the period from the beginning of 2001 to the end of 2004. One task of a supervisor is to estimate the 'recalibration factor', i.e. by how much a bank over- or underestimates its VaR. The Basel traffic light approach to backtesting, which maps the count of exceptions in the trailing year to a multiplicative penalty factor, can be viewed as a way to estimate the 'recalibration factor'. We introduce techniques that provide a much more powerful inference on the recalibration factor than the Basel approach based on the count of exceptions. The notions 'return on VaR (RoVaR)' and 'well-behaved forecast system' are keys to linking the problem at hand to the established literature on the evaluation of density forecasts. We perform extensive bootstrapping analyses allowing (1) an assessment of the accuracy of our estimates of the recalibration factor and (2) a comparison of the estimation error of different scale and quantile estimators. Certain robust estimators turn out to outperform the more popular estimators used in the literature. Empirical results for the non-public data are compared to the corresponding results for hypothetical portfolios based on publicly available market data. While these comparisons have to be interpreted with care since the banks' P&L data tend to be more contaminated with errors than the major market indices, they shed light on the similarities and differences between banks' RoVaRs and market index returns.

Suggested Citation

  • Stefan Jaschke & Gerhard Stahl & Richard Stehle, 2007. "Value-at-risk forecasts under scrutiny—the German experience," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 621-636.
  • Handle: RePEc:taf:quantf:v:7:y:2007:i:6:p:621-636
    DOI: 10.1080/14697680600999104
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680600999104
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680600999104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1998. "Real-Time Multivariate Density Forecast Evaluation and Calibration: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-079, New York University, Leonard N. Stern School of Business-.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sibbertsen, Philipp & Stahl, Gerhard & Luedtke, Corinna, 2008. "Measuring Model Risk," Hannover Economic Papers (HEP) dp-409, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    2. Gourieroux, Christian & Tiomo, Andre, 2019. "The Evaluation of Model Risk for Probability of Default and Expected Loss," MPRA Paper 95795, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez, Jose A. & Saidenberg, Marc R., 2000. "Evaluating credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 151-165, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:7:y:2007:i:6:p:621-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.