IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v7y2007i2p231-244.html
   My bibliography  Save this article

Solving ALM problems via sequential stochastic programming

Author

Listed:
  • Florian Herzog
  • Gabriel Dondi
  • Simon Keel
  • Lorenz M. Schumani
  • Hans P. Geering

Abstract

In this paper, an approximation of dynamic programming using sequential stochastic programming is introduced to solve long-term dynamic financial planning problems. We prove that by approximating the true asset return dynamics by a set of scenarios and re-solving the problem at every time-step, we can solve in principle the dynamic programming problem with an arbitrarily small error. The dynamic programming algorithm is effected on the approximate sample return dynamics by means of stochastic programming. This method is applied to the problem of a fund that guarantees a minimal return on investments. This minimal return guarantee is the liability of the fund. The dynamic portfolio management problem consists of maximizing the multi-period return while limiting the shortfall with regard to the guaranteed return. The problem is tested in an 8 year out-of-sample backtest from the perspective of a Swiss fund that invests domestically and in the EU markets and faces transaction costs.

Suggested Citation

  • Florian Herzog & Gabriel Dondi & Simon Keel & Lorenz M. Schumani & Hans P. Geering, 2007. "Solving ALM problems via sequential stochastic programming," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 231-244.
  • Handle: RePEc:taf:quantf:v:7:y:2007:i:2:p:231-244
    DOI: 10.1080/14697680701272575
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680701272575
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680701272575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Primbs & Chang Sung, 2008. "A Stochastic Receding Horizon Control Approach to Constrained Index Tracking," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 15(1), pages 3-24, March.
    2. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.
    3. Lee, Zu-Hsu & Deng, Shiming & Lin, Beixin & Yang, James G.S., 2010. "Decision model and analysis for investment interest expense deduction and allocation," European Journal of Operational Research, Elsevier, vol. 200(1), pages 268-280, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:7:y:2007:i:2:p:231-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.