IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v5y2005i1p27-34.html
   My bibliography  Save this article

Analysis of default data using hidden Markov models

Author

Listed:
  • Giacomo Giampieri
  • Mark Davis
  • Martin Crowder

Abstract

The occurrence of defaults within a bond portfolio is modelled as a simple hidden Markov process. The hidden variable represents the risk state, which is assumed to be common to all bonds within one particular sector and region. After describing the model and recalling the basic properties of hidden Markov chains, we show how to apply the model to a simulated sequence of default events. Then, we consider a real scenario, with default events taken from a large database provided by Standard & Poor's. We are able to obtain estimates for the model parameters and also to reconstruct the most likely sequence of the risk state. Finally, we address the issue of global versus industry-specific risk factors. By extending our model to include independent hidden risk sequences, we can disentangle the risk associated with the business cycle from that specific to the individual sector.

Suggested Citation

  • Giacomo Giampieri & Mark Davis & Martin Crowder, 2005. "Analysis of default data using hidden Markov models," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 27-34.
  • Handle: RePEc:taf:quantf:v:5:y:2005:i:1:p:27-34
    DOI: 10.1080/14697680500039951
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500039951
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500039951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    2. Areski Cousin & J'er^ome Lelong & Tom Picard, 2021. "Rating transitions forecasting: a filtering approach," Papers 2109.10567, arXiv.org, revised Jun 2023.
    3. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    4. Stefan Kerbl & Michael Sigmund, 2011. "What Drives Aggregate Credit Risk?," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 22, pages 72-87.
    5. Hugh Christensen & Simon Godsill & Richard E Turner, 2020. "Hidden Markov Models Applied To Intraday Momentum Trading With Side Information," Papers 2006.08307, arXiv.org.
    6. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Rating transitions forecasting: a filtering approach," Post-Print hal-03347521, HAL.
    7. Areski Cousin & Jérôme Lelong & Tom Picard, 2022. "Rating transitions forecasting: a filtering approach," Working Papers hal-03347521, HAL.
    8. Xing, Haipeng & Sun, Ning & Chen, Ying, 2012. "Credit rating dynamics in the presence of unknown structural breaks," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 78-89.
    9. Jan Obłój & Thaleia Zariphopoulou, 2021. "In memoriam: Mark H. A. Davis and his contributions to mathematical finance," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1099-1110, October.
    10. Feng-Hui Yu & Jiejun Lu & Jia-Wen Gu & Wai-Ki Ching, 2019. "Modeling Credit Risk with Hidden Markov Default Intensity," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1213-1229, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:5:y:2005:i:1:p:27-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.