IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i4p441-456.html
   My bibliography  Save this article

How trading activity scales with company size in the FTSE 100

Author

Listed:
  • Gilles Zumbach

Abstract

This paper investigates the scaling dependencies between measures of 'activity' and of 'size' for companies included in the FTSE 100. The 'size' of companies is measured by the total market capitalization. The 'activity' is measured with several quantities related to trades (transaction value per trade, transaction value per hour, tick rate), to the order queue (total number of orders, total value), and to the price dynamic (spread, volatility). The outcome is that systematic scaling relations are observed: (1) the value exchanged by hour and value in the order queue have exponents of less than 1, respectively 0.90 and 0.75; (2) the tick rate and the value per transaction scale with the exponents 0.39 and 0.44; (3) the annualized volatility is independent of the size, and the tick-by-tick volatility decreases with the market capitalization with an exponent of -0.23; (4) the spread increases with the volatility with an exponent of 0.94. A theoretical random walk argument is given that relates the volatility exponents to the exponents in points 1 and 2.

Suggested Citation

  • Gilles Zumbach, 2004. "How trading activity scales with company size in the FTSE 100," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 441-456.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:4:p:441-456
    DOI: 10.1080/14697680400008619
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680400008619
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680400008619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marsili, Matteo, 2003. "Scale invariance and criticality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 17-24.
    2. Fulvio Corsi & Gilles Zumbach & Ulrich A. Muller & Michel M. Dacorogna, 2001. "Consistent High-precision Volatility from High-frequency Data," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 183-204, July.
    3. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    4. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    5. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Wyart & Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters & Michele Vettorazzo, 2006. "Relation between Bid-Ask Spread, Impact and Volatility in Double Auction Markets," Science & Finance (CFM) working paper archive 500067, Science & Finance, Capital Fund Management.
    2. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    3. Matthieu Wyart & Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters & Michele Vettorazzo, 2008. "Relation between bid-ask spread, impact and volatility in order-driven markets," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 41-57.
    4. Rafael Velasco-Fuentes & Wing Lon Ng, 2011. "Nonlinearities in stochastic clocks: trades and volume as subordinators of electronic markets," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 863-881.
    5. Stanislao Gualdi & Giulio Cimini & Kevin Primicerio & Riccardo Di Clemente & Damien Challet, 2016. "Statistically validated network of portfolio overlaps and systemic risk," Post-Print hal-01705092, HAL.
    6. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    7. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    8. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    9. Hsieh Fushing & Shu-Chun Chen & Chii-Ruey Hwang, 2012. "Discovering stock dynamics through multidimensional volatility phases," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 213-230, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Zumbach, 2004. "How the trading activity scales with the company sizes in the FTSE 100," Papers cond-mat/0407769, arXiv.org.
    2. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    3. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    4. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    5. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    6. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    7. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    9. Maskawa, Jun-ichi, 2007. "Stock price fluctuations and the mimetic behaviors of traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 172-178.
    10. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    11. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    12. Warusawitharana, Missaka, 2018. "Time-varying volatility and the power law distribution of stock returns," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 123-141.
    13. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    14. Wang, Tiansong & Wang, Jun & Zhang, Junhuan & Fang, Wen, 2011. "Voter interacting systems applied to Chinese stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2492-2506.
    15. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    16. Hiroyuki Moriya, 2017. "Quantized price volatility model for transaction data," Evolutionary and Institutional Economics Review, Springer, vol. 14(2), pages 397-408, December.
    17. Stefan Thurner & J. Doyne Farmer & John Geanakoplos, 2012. "Leverage causes fat tails and clustered volatility," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 695-707, February.
    18. Olkhov, Victor, 2019. "New Essentials of Economic Theory III. Economic Applications," MPRA Paper 94053, University Library of Munich, Germany.
    19. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    20. Olkhov, Victor, 2018. "Expectations, Price Fluctuations and Lorenz Attractor," MPRA Paper 89105, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:4:p:441-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.