IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v2y2002i4p303-314.html
   My bibliography  Save this article

The skewed multifractal random walk with applications to option smiles

Author

Listed:
  • Benoit Pochart
  • Jean-Philippe Bouchaud

Abstract

We generalize the construction of the multifractal random walk (MRW) due to Bacry et al (Bacry E, Delour J and Muzy J-F 2001 Modelling financial time series using multifractal random walks Physica A 299 84) to take into account the asymmetric character of financial returns. We show how one can include in this class of models the observed correlation between past returns and future volatilities, in such a way that the scale invariance properties of the MRW are preserved. We compute the leading behaviour of q-moments of the process, which behave as power laws of the time lag with an exponent ζq=p-2p(p-1)λ2 for even q=2p, as in the symmetric MRW, and as ζq=p + 1-2p2λ2-α (q=2p + 1), where λ and α are parameters. We show that this extended model reproduces the 'HARCH' effect or 'causal cascade' reported by some authors. We illustrate the usefulness of this 'skewed' MRW by computing the resulting shape of the volatility smiles generated by such a process, which we compare with approximate cumulant expansion formulae for the implied volatility. A large variety of smile surfaces can be reproduced.

Suggested Citation

  • Benoit Pochart & Jean-Philippe Bouchaud, 2002. "The skewed multifractal random walk with applications to option smiles," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 303-314.
  • Handle: RePEc:taf:quantf:v:2:y:2002:i:4:p:303-314
    DOI: 10.1088/1469-7688/2/4/306
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1088/1469-7688/2/4/306
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1088/1469-7688/2/4/306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Walter, 2020. "Sustainable Financial Risk Modelling Fitting the SDGs: Some Reflections," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    2. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    3. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    4. Rudy Morel & Gaspar Rochette & Roberto Leonarduzzi & Jean-Philippe Bouchaud & St'ephane Mallat, 2022. "Scale Dependencies and Self-Similar Models with Wavelet Scattering Spectra," Papers 2204.10177, arXiv.org, revised Jun 2023.
    5. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
    6. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    7. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    8. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
    9. Saâdaoui, Foued, 2023. "Skewed multifractal scaling of stock markets during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
    11. Benoit Pochard & Jean-Philippe Bouchaud, 2003. "Option pricing and hedging with minimum expected shortfall," Science & Finance (CFM) working paper archive 500029, Science & Finance, Capital Fund Management.
    12. Lisa Borland & Jean-Philippe Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management.
    13. Zoltan Eisler & Janos Kertesz, 2004. "Multifractal model of asset returns with leverage effect," Papers cond-mat/0403767, arXiv.org, revised May 2004.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:2:y:2002:i:4:p:303-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.