IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v24y2024i2p337-346.html
   My bibliography  Save this article

On the optimal forecast with the fractional Brownian motion

Author

Listed:
  • Xiaohu Wang
  • Jun Yu
  • Chen Zhang

Abstract

This paper investigates the performance of different forecasting formulas with fractional Brownian motion based on discrete and finite samples. Existing literature presents two formulas for generating optimal forecasts when continuous records are available. One formula relies on a history over an infinite past, while the other is designed for a record limited to a finite past. In reality, only observations at discrete time points over a finite past are available. In this case, the forecasting formula, which has been widely used in the literature, is the one obtained by Gatheral et al. (Volatility is rough. Quant. Finance, 2018, 18(6), 933–949) that truncates and discretizes the formula based on continuous records over an infinite past. The present paper advocates an alternative forecasting formula, which is the conditional expectation based on finite past discrete-time observations. The findings suggest that the conditional expectation approach produces more accurate forecasts than the existing method, as demonstrated by both simulated data and actual daily realized volatility (RV) observations. Moreover, we also provide empirical evidence showing that the conditional expectation approach can lead to larger economic values than the existing method.

Suggested Citation

  • Xiaohu Wang & Jun Yu & Chen Zhang, 2024. "On the optimal forecast with the fractional Brownian motion," Quantitative Finance, Taylor & Francis Journals, vol. 24(2), pages 337-346, January.
  • Handle: RePEc:taf:quantf:v:24:y:2024:i:2:p:337-346
    DOI: 10.1080/14697688.2023.2297730
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2023.2297730
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2023.2297730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G01 - Financial Economics - - General - - - Financial Crises

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:24:y:2024:i:2:p:337-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.