IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v23y2023i10p1465-1482.html
   My bibliography  Save this article

Distributionally robust end-to-end portfolio construction

Author

Listed:
  • Giorgio Costa
  • Garud N. Iyengar

Abstract

We propose an end-to-end distributionally robust system for portfolio construction that integrates the asset return prediction model with a distributionally robust portfolio optimization model. We also show how to learn the risk-tolerance parameter and the degree of robustness directly from data. End-to-end systems have an advantage in that information can be communicated between the prediction and decision layers during training, allowing the parameters to be trained for the final task rather than solely for predictive performance. However, existing end-to-end systems are not able to quantify and correct for the impact of model risk on the decision layer. Our proposed distributionally robust end-to-end portfolio selection system explicitly accounts for the impact of model risk. The decision layer chooses portfolios by solving a minimax problem where the distribution of the asset returns is assumed to belong to an ambiguity set centered around a nominal distribution. Using convex duality, we recast the minimax problem in a form that allows for efficient training of the end-to-end system.

Suggested Citation

  • Giorgio Costa & Garud N. Iyengar, 2023. "Distributionally robust end-to-end portfolio construction," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1465-1482, October.
  • Handle: RePEc:taf:quantf:v:23:y:2023:i:10:p:1465-1482
    DOI: 10.1080/14697688.2023.2236148
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2023.2236148
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2023.2236148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhyeong Lee & Inwoo Tae & Yongjae Lee, 2024. "Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization," Papers 2409.09684, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:23:y:2023:i:10:p:1465-1482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.