IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i6p1071-1090.html
   My bibliography  Save this article

QuantNet: transferring learning across trading strategies

Author

Listed:
  • Adriano Koshiyama
  • Stefano B. Blumberg
  • Nick Firoozye
  • Philip Treleaven
  • Sebastian Flennerhag

Abstract

Systematic financial trading strategies account for over 80% of trade volume in equities and a large chunk of the foreign exchange market. In spite of the availability of data from multiple markets, current approaches in trading rely mainly on learning trading strategies per individual market. In this paper, we take a step towards developing fully end-to-end global trading strategies that leverage systematic trends to produce superior market-specific trading strategies. We introduce QuantNet: an architecture that learns market-agnostic trends and use these to learn superior market-specific trading strategies. Each market-specific model is composed of an encoder-decoder pair. The encoder transforms market-specific data into an abstract latent representation that is processed by a global model shared by all markets, while the decoder learns a market-specific trading strategy based on both local and global information from the market-specific encoder and the global model. QuantNet uses recent advances in transfer and meta-learning, where market-specific parameters are free to specialize on the problem at hand, whilst market-agnostic parameters are driven to capture signals from all markets. By integrating over idiosyncratic market data we can learn general transferable dynamics, avoiding the problem of overfitting to produce strategies with superior returns. We evaluate QuantNet on historical data across 3103 assets in 58 global equity markets. Against the top performing baseline, QuantNet yielded 51% higher Sharpe and 69% Calmar ratios. In addition, we show the benefits of our approach over the non-transfer learning variant, with improvements of 15% and 41% in Sharpe and Calmar ratios. A link to QuantNet code is made available in the appendix.

Suggested Citation

  • Adriano Koshiyama & Stefano B. Blumberg & Nick Firoozye & Philip Treleaven & Sebastian Flennerhag, 2022. "QuantNet: transferring learning across trading strategies," Quantitative Finance, Taylor & Francis Journals, vol. 22(6), pages 1071-1090, June.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:6:p:1071-1090
    DOI: 10.1080/14697688.2021.1999487
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2021.1999487
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2021.1999487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleyton da Costa, 2023. "Anomaly Detection in Global Financial Markets with Graph Neural Networks and Nonextensive Entropy," Papers 2308.02914, arXiv.org, revised Aug 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:6:p:1071-1090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.