IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i2p289-302.html
   My bibliography  Save this article

Myopic robust index tracking with Bregman divergence

Author

Listed:
  • S. Penev
  • P. V. Shevchenko
  • W. Wu

Abstract

Index tracking is a popular form of asset management. Typically, a quadratic function is used to define the tracking error of a portfolio and the look back approach is applied to solve the index tracking problem. We argue that a forward looking approach is more suitable, whereby the tracking error is expressed as an expectation of a function of the difference between the returns of the index and of the portfolio. We also assume that there is model uncertainty in the distribution of the assets, hence a robust version of the optimization problem needs to be adopted. We use Bregman divergence in describing the deviation between the nominal and actual (true) distribution of the components of the index. In this scenario, we derive the optimal robust index tracking portfolio in a semi-analytical form as a solution of a system of nonlinear equations. Several numerical results are presented that allow us to compare the performance of this robust portfolio with the optimal non-robust portfolio. We show that, especially during market downturns, the robust portfolio can be very advantageous.

Suggested Citation

  • S. Penev & P. V. Shevchenko & W. Wu, 2022. "Myopic robust index tracking with Bregman divergence," Quantitative Finance, Taylor & Francis Journals, vol. 22(2), pages 289-302, February.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:2:p:289-302
    DOI: 10.1080/14697688.2021.1950918
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2021.1950918
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2021.1950918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakagawa, Kei & Suimon, Yoshiyuki, 2022. "Inflation rate tracking portfolio optimization method: Evidence from Japan," Finance Research Letters, Elsevier, vol. 49(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:2:p:289-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.