IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i12p2275-2295.html
   My bibliography  Save this article

Supervised portfolios

Author

Listed:
  • Guillaume Chevalier
  • Guillaume Coqueret
  • Thomas Raffinot

Abstract

We propose an asset allocation strategy that engineers optimal weights before feeding them to a supervised learning algorithm. In contrast to the traditional approaches, the machine is able to learn risk measures, preferences, and constraints beyond simple expected returns, within a flexible, forward-looking, and non-linear framework. Our empirical analysis illustrates that predicting the optimal weights directly instead of the traditional two-step approach leads to more stable portfolios with statistically better risk-adjusted performance measures.

Suggested Citation

  • Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 22(12), pages 2275-2295, December.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:12:p:2275-2295
    DOI: 10.1080/14697688.2022.2122543
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2022.2122543
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2022.2122543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon, Frederik & Weibels, Sebastian & Zimmermann, Tom, 2023. "Deep parametric portfolio policies," CFR Working Papers 23-01, University of Cologne, Centre for Financial Research (CFR).
    2. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:12:p:2275-2295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.