IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v20y2020i5p769-781.html
   My bibliography  Save this article

Random matrix models for datasets with fixed time horizons

Author

Listed:
  • G. L. Zitelli

Abstract

This paper examines the use of random matrix theory as it has been applied to model large financial datasets, especially for the purpose of estimating the bias inherent in Mean-Variance portfolio allocation when a sample covariance matrix is substituted for the true underlying covariance. Such problems were observed and modeled in the seminal work of Laloux et al. [Noise dressing of financial correlation matrices. Phys. Rev. Lett., 1999, 83, 1467] and rigorously proved by Bai et al. [Enhancement of the applicability of Markowitz's portfolio optimization by utilizing random matrix theory. Math. Finance, 2009, 19, 639–667] under minimal assumptions. If the returns on assets to be held in the portfolio are assumed independent and stationary, then these results are universal in that they do not depend on the precise distribution of returns. This universality has been somewhat misrepresented in the literature, however, as asymptotic results require that an arbitrarily long time horizon be available before such predictions necessarily become accurate. In order to reconcile these models with the highly non-Gaussian returns observed in real financial data, a new ensemble of random rectangular matrices is introduced, modeled on the observations of independent Lévy processes over a fixed time horizon.

Suggested Citation

  • G. L. Zitelli, 2020. "Random matrix models for datasets with fixed time horizons," Quantitative Finance, Taylor & Francis Journals, vol. 20(5), pages 769-781, May.
  • Handle: RePEc:taf:quantf:v:20:y:2020:i:5:p:769-781
    DOI: 10.1080/14697688.2020.1711962
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2020.1711962
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2020.1711962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. L. Zitelli, 2022. "Amalgamated Free Lévy Processes as Limits of Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2176-2193, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:20:y:2020:i:5:p:769-781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.