Index tracking through deep latent representation learning
Author
Abstract
Suggested Citation
DOI: 10.1080/14697688.2019.1683599
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Xianhua Peng & Chenyin Gong & Xue Dong He, 2023. "Reinforcement Learning for Financial Index Tracking," Papers 2308.02820, arXiv.org.
- Nakagawa, Kei & Suimon, Yoshiyuki, 2022. "Inflation rate tracking portfolio optimization method: Evidence from Japan," Finance Research Letters, Elsevier, vol. 49(C).
- Li, Helong & Huang, Qin & Wu, Baiyi, 2021. "Improving the naive diversification: An enhanced indexation approach," Finance Research Letters, Elsevier, vol. 39(C).
- Yoonsik Hong & Yanghoon Kim & Jeonghun Kim & Yongmin Choi, 2022. "Index Tracking via Learning to Predict Market Sensitivities," Papers 2209.00780, arXiv.org, revised Dec 2022.
- Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023.
"A flexible predictive density combination for large financial data sets in regular and crisis periods,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2022. "A Flexible Predictive Density Combination for Large Financial Data Sets in Regular and Crisis Periods," Tinbergen Institute Discussion Papers 22-053/III, Tinbergen Institute.
- Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:20:y:2020:i:4:p:639-652. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.