IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i6p981-996.html
   My bibliography  Save this article

A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering

Author

Listed:
  • A. Verma
  • R. J. Buonocore
  • T. Di Matteo

Abstract

We introduce a new factor model for log volatilities that considers contributions, and performs dimensionality reduction, at a global level through the market, and at a local level through clusters and their interactions. We do not assume a-priori the number of clusters in the data, instead using the Directed Bubble Hierarchical Tree algorithm to fix the number of factors. We use the factor model to study how the log volatility contributes to volatility clustering, quantifying the strength of the volatility clustering using a new nonparametric integrated proxy. Indeed finding a link between volatility and volatility clustering, we find that a global analysis reveals that only the market contributes to the volatility clustering. A local analysis reveals that for some clusters, the cluster itself contributes statistically to the volatility clustering effect. This is significantly advantageous over other factor models, since it offers a way of selecting factors in a statistical way, whilst also keeping economically relevant factors. Finally, we show that the log volatility factor model explains a similar amount of memory to a principal components analysis factor model and an exploratory factor model.

Suggested Citation

  • A. Verma & R. J. Buonocore & T. Di Matteo, 2019. "A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 981-996, June.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:6:p:981-996
    DOI: 10.1080/14697688.2018.1535183
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1535183
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1535183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    2. Pang, Raymond Ka-Kay & Granados, Oscar M. & Chhajer, Harsh & Legara, Erika Fille T., 2021. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Zhou, Wei & Zhong, Guang-Yan & Li, Jiang-Cheng, 2022. "Stability of financial market driven by information delay and liquidity in delay agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Peter Sinka & Peter J. Zeitsch, 2022. "Hedge Effectiveness of the Credit Default Swap Indices: a Spectral Decomposition and Network Topology Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1375-1412, December.
    5. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    6. Raymond Ka-Kay Pang & Oscar Granados & Harsh Chhajer & Erika Fille Legara, 2020. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Papers 2009.13390, arXiv.org, revised Feb 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:6:p:981-996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.