IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i6p1043-1059.html
   My bibliography  Save this article

Stochastic automatic differentiation: automatic differentiation for Monte-Carlo simulations

Author

Listed:
  • Christian P. Fries

Abstract

In this paper we re-formulate the automatic differentiation (and in particular, the backward automatic differentiation, also known as adjoint automatic differentiation, AAD) for random variables. While this is just a formal re-interpretation it allows one to investigate the algorithms in the presence of stochastic operators like expectation, conditional expectation or indicator functions.We then specify the algorithms to efficiently incorporate non-pathwise operators (like conditional expectation operators). Under a comparably mild assumption it is possible to retain the simplicity of the backward automatic differentiation algorithm in the presence of conditional expectation operators. This simplifies important applications like - in mathematical finance - the application of backward automatic differentiation to the valuation of Bermudan options or calculation of xVA's.We give the proof for a generalized version of the result. We then discuss in detail how the framework allows dramatic reduction of the memory requirements and improves the performance of a tapeless implementation of automatic differentiation (while the implementation brings advantages similar to ‘vector AAD’ (sometimes called tape compression) for free, it allows improvements beyond this. We present the implementation aspects and show how concepts from object-functional programing, like immutable objects and lazy evaluation enable additional reductions of the memory requirements.

Suggested Citation

  • Christian P. Fries, 2019. "Stochastic automatic differentiation: automatic differentiation for Monte-Carlo simulations," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 1043-1059, June.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:6:p:1043-1059
    DOI: 10.1080/14697688.2018.1556398
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1556398
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1556398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:6:p:1043-1059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.