IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i6p1017-1042.html
   My bibliography  Save this article

Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution

Author

Listed:
  • Chao Wang
  • Qian Chen
  • Richard Gerlach

Abstract

The realized-GARCH framework is extended to incorporate the two-sided Weibull distribution, for the purpose of volatility and tail risk forecasting in a financial time series. Further, the realized range, as a competitor for realized variance or daily returns, is employed as the realized measure in the realized-GARCH framework. Sub-sampling and scaling methods are applied to both the realized range and realized variance, to help deal with inherent micro-structure noise and inefficiency. A Bayesian Markov Chain Monte Carlo (MCMC) method is adapted and employed for estimation and forecasting, while various MCMC efficiency and convergence measures are employed to assess the validity of the method. In addition, the properties of the MCMC estimator are assessed and compared with maximum likelihood, via a simulation study. Compared to a range of well-known parametric GARCH and realized-GARCH models, tail risk forecasting results across seven market indices, as well as two individual assets, clearly favour the proposed realized-GARCH model incorporating the two-sided Weibull distribution; especially those employing the sub-sampled realized variance and sub-sampled realized range.

Suggested Citation

  • Chao Wang & Qian Chen & Richard Gerlach, 2019. "Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 1017-1042, June.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:6:p:1017-1042
    DOI: 10.1080/14697688.2018.1540880
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1540880
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1540880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
    2. Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
    3. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    4. Amaro, Raphael & Pinho, Carlos, 2022. "Energy commodities: A study on model selection for estimating Value-at-Risk," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 5-27.
    5. Yuta Kurose, 2022. "Bayesian GARCH modeling for return and range," Economics Bulletin, AccessEcon, vol. 42(3), pages 1717-1727.
    6. Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
    7. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:6:p:1017-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.