IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i3p407-426.html
   My bibliography  Save this article

A self-exciting switching jump diffusion: properties, calibration and hitting time

Author

Listed:
  • Donatien Hainaut
  • Griselda Deelstra

Abstract

A way to model the clustering of jumps in asset prices consists in combining a diffusion process with a jump Hawkes process in the dynamics of the asset prices. This article proposes a new alternative model based on regime switching processes, referred to as a self-exciting switching jump diffusion (SESJD) model. In this model, jumps in the asset prices are synchronized with changes of states of a hidden Markov chain. The matrix of transition probabilities of this chain is designed in order to approximate the dynamics of a Hawkes process. This model presents several advantages compared to other jump clustering models. Firstly, the SESJD model is easy to fit to time series since estimation can be performed with an enhanced Hamilton filter. Secondly, the model explains various forms of option volatility smiles. Thirdly, several properties about the hitting times of the SESJD model can be inferred by using a fluid embedding technique, which leads to closed form expressions for some financial derivatives, like perpetual binary options.

Suggested Citation

  • Donatien Hainaut & Griselda Deelstra, 2019. "A self-exciting switching jump diffusion: properties, calibration and hitting time," Quantitative Finance, Taylor & Francis Journals, vol. 19(3), pages 407-426, March.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:3:p:407-426
    DOI: 10.1080/14697688.2018.1501511
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1501511
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1501511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:3:p:407-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.