IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i11p1817-1837.html
   My bibliography  Save this article

Model-driven statistical arbitrage on LETF option markets

Author

Listed:
  • S. Nasekin
  • W. K. Härdle

Abstract

In this paper, we study the statistical properties of the moneyness scaling transformation, which adjusts the moneyness coordinate of the implied volatility smile in an attempt to remove the discrepancy between the IV smiles for levered and unlevered ETF options. We construct bootstrap uniform confidence bands which indicate that the implied volatility smiles are statistically different after moneyness scaling has been performed. An empirical application shows that there are trading opportunities possible on the LETF market. A statistical arbitrage type strategy based on a dynamic semiparametric factor model is presented. This strategy presents a statistical decision algorithm which generates trade recommendations based on comparison of model and observed LETF implied volatility surface. It is shown to generate positive returns with a high probability. Extensive econometric analysis of the LETF implied volatility process is performed including out-of-sample forecasting based on a semiparametric factor model and a uniform confidence bands' study. These provide new insights into the latent dynamics of the implied volatility surface. We also incorporate Heston stochastic volatility into the moneyness scaling method for better tractability of the model.

Suggested Citation

  • S. Nasekin & W. K. Härdle, 2019. "Model-driven statistical arbitrage on LETF option markets," Quantitative Finance, Taylor & Francis Journals, vol. 19(11), pages 1817-1837, November.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:11:p:1817-1837
    DOI: 10.1080/14697688.2019.1605186
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1605186
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1605186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023. "Statistical arbitrage: factor investing approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
    2. Lucas Schneider & Johannes Stübinger, 2020. "Dispersion Trading Based on the Explanatory Power of S&P 500 Stock Returns," Mathematics, MDPI, vol. 8(9), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:11:p:1817-1837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.