IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i5p749-760.html
   My bibliography  Save this article

Point and density prediction of intra-day volume using Bayesian linear ACV models: evidence from the Polish stock market

Author

Listed:
  • Roman Huptas

Abstract

Trading volume is one of the key measures of trading activity intensity and plays a crucial role in the financial market microstructure literature. In this paper, we examine the out-of-sample point and density forecasting performance of Bayesian Autoregressive Conditional Volume (ACV) models for intra-day volume data. Based on 5-min traded volume data for stocks quoted on the Warsaw Stock Exchange, a leading stock market in Central and Eastern Europe, we find that, in terms of point forecasts, the considered linear ACV models significantly outperform benchmarks such as the naïve and Rolling Means methods but not necessarily Autoregressive Moving Average (ARMA) models. Moreover, the point forecasts obtained within the exponential error ACV model are significantly superior to those calculated in other competing structures for which Burr or generalized gamma distributions are specified. The main finding from the analysis of density forecasts is that, in many cases, the linear ACV models with the Burr and generalized gamma distributions provide significantly better density forecasts than the linear ACV model with exponential innovations and the ARMA models in terms of the log-predictive score, calibration and sharpness.

Suggested Citation

  • Roman Huptas, 2018. "Point and density prediction of intra-day volume using Bayesian linear ACV models: evidence from the Polish stock market," Quantitative Finance, Taylor & Francis Journals, vol. 18(5), pages 749-760, May.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:5:p:749-760
    DOI: 10.1080/14697688.2017.1414491
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1414491
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2017.1414491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:5:p:749-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.