IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i7p1053-1067.html
   My bibliography  Save this article

A semiparametric graphical modelling approach for large-scale equity selection

Author

Listed:
  • Han Liu
  • John Mulvey
  • Tianqi Zhao

Abstract

We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

Suggested Citation

  • Han Liu & John Mulvey & Tianqi Zhao, 2016. "A semiparametric graphical modelling approach for large-scale equity selection," Quantitative Finance, Taylor & Francis Journals, vol. 16(7), pages 1053-1067, July.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:7:p:1053-1067
    DOI: 10.1080/14697688.2015.1101149
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2015.1101149
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2015.1101149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    2. Derumigny, A. & Fermanian, J.-D., 2022. "Identifiability and estimation of meta-elliptical copula generators," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Xin Zhang & Lan Wu & Zhixue Chen, 2021. "Constructing long-short stock portfolio with a new listwise learn-to-rank algorithm," Papers 2104.12484, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:7:p:1053-1067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.