IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i6p1047-1058.html
   My bibliography  Save this article

Using a hybrid evolution approach to forecast financial failures for Taiwan-listed companies

Author

Listed:
  • Mu-Yen Chen

Abstract

Bankruptcy has been an important topic in finance and accounting research for a long time. Recent major bankruptcies have included seemingly robust companies such as Enron, Kmart, Global Crossing, WorldCom, and Lehman Brothers. These cases have become of serious public concern due to the huge influence these companies have on the real economy. This research proposes a hybrid evolution approach to integrate particle swarm optimization (PSO) with the support vector machine (SVM) technique for the purpose of predicting financial failures. The preparation phase collected an initial sample of 68 companies listed by the Taiwan Stock Exchange Corporation (TSEC). The financial datasets were constructed based on 33 financial ratios, four non-financial ratios and one combined macroeconomic index. To select suitable indicators for the input vector, the principle component analysis (PCA) technique was applied to reduce the data and determine how groupings of indicators measure the same concept. In the swarming phase, PSO was applied to obtain suitable parameters for SVM modeling without reducing the classification accuracy rate. In the modeling phase, the SVM model was used to build a training set that was used to calculate the model's accuracy and fitness value. Finally, these optimized parameters were used in the hybrid PSO-SVM model to evaluate the model's predictive accuracy. This paper provides four critical contributions. (1) Using the PCA technique, the statistical results indicate that the financial prediction performance is mainly affected by financial ratios rather than non-financial and macroeconomic ratios. (2) Even with the input of nearly 70% fewer indicators, our approach is still able to provide highly accurate forecasts of financial bankruptcy. (3) The empirical results show that the PSO-SVM model provides better classification accuracy (i.e. normal vs. bankrupt) than the grid search (Grid-SVM) approach. (4) For six well-known UCI datasets, the PSO-SVM model also provides better prediction accuracy than the Grid-SVM, GA-SVM, SVM, SOM, and SVR-SOM approaches. Therefore, this paper proposes that the PSO-SVM approach is better suited for predicting potential financial distress.

Suggested Citation

  • Mu-Yen Chen, 2014. "Using a hybrid evolution approach to forecast financial failures for Taiwan-listed companies," Quantitative Finance, Taylor & Francis Journals, vol. 14(6), pages 1047-1058, June.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:6:p:1047-1058
    DOI: 10.1080/14697688.2011.618458
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2011.618458
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2011.618458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    3. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    4. Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:6:p:1047-1058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.