IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i3p495-507.html
   My bibliography  Save this article

Refining the least squares Monte Carlo method by imposing structure

Author

Listed:
  • Pascal L�tourneau
  • Lars Stentoft

Abstract

The least squares Monte Carlo method of Longstaff and Schwartz has become a standard numerical method for option pricing with many potential risk factors. An important choice in the method is the number of regressors to use and using too few or too many regressors leads to biased results. This is so particularly when considering multiple risk factors or when simulation is computationally expensive and hence relatively few paths can be used. In this paper we show that by imposing structure in the regression problem we can improve the method by reducing the bias. This holds across different maturities, for different categories of moneyness and for different types of option payoffs and often leads to significantly increased efficiency.

Suggested Citation

  • Pascal L�tourneau & Lars Stentoft, 2014. "Refining the least squares Monte Carlo method by imposing structure," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 495-507, March.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:3:p:495-507
    DOI: 10.1080/14697688.2013.787543
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.787543
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.787543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Létourneau & Lars Stentoft, 2019. "Bootstrapping the Early Exercise Boundary in the Least-Squares Monte Carlo Method," JRFM, MDPI, vol. 12(4), pages 1-21, December.
    2. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    3. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Michael Ludkovski, 2015. "Kriging Metamodels and Experimental Design for Bermudan Option Pricing," Papers 1509.02179, arXiv.org, revised Oct 2016.
    5. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    6. Ruimeng Hu, 2019. "Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems," Papers 1901.03478, arXiv.org, revised Mar 2020.
    7. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    8. Cortazar, Gonzalo & Naranjo, Lorenzo & Sainz, Felipe, 2021. "Optimal decision policy for real options under general Markovian dynamics," European Journal of Operational Research, Elsevier, vol. 288(2), pages 634-647.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:3:p:495-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.