IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i12p2185-2192.html
   My bibliography  Save this article

Quantile regression estimates and the analysis of structural breaks

Author

Listed:
  • Marilena Furno

Abstract

The paper considers a test for structural breaks based on quantile regressions instead of OLS estimates. Besides granting robustness, this allows us to verify the impact of a break in more than one point of the conditional distribution. The quantile regression test is then repeatedly implemented as a diagnostic tool to uncover partial or spurious breaks. The test is also implemented to measure the contribution of each explanatory variable to the instability of the regression coefficients, thus finding which one of the different possible sources of breaks linked to the nature of the explanatory variables is the most effective. A real data example of exchange rates shows the presence of a time-driven break, but only at the lower quartile, while the analysis of the explanatory variable excludes its involvement in the break. Since the asymptotic distribution of the OLS test for structural change depends on i.i.d. normal errors and on the exogeneity of the explanatory variables, a Monte Carlo study analyses the behavior of OLS and quantile regression tests for structural changes with lagged endogenous variables, non-normal errors, spurious or partial breaks, and misspecification.

Suggested Citation

  • Marilena Furno, 2014. "Quantile regression estimates and the analysis of structural breaks," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2185-2192, December.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:12:p:2185-2192
    DOI: 10.1080/14697688.2011.653387
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2011.653387
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2011.653387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    2. Harry J. Turtle & Chengping Zhang, 2015. "Structural breaks and portfolio performance in global equity markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 909-922, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:12:p:2185-2192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.