IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i12p2135-2153.html
   My bibliography  Save this article

Linear predictability vs. bull and bear market models in strategic asset allocation decisions: evidence from UK data

Author

Listed:
  • Massimo Guidolin
  • Stuart Hyde

Abstract

Most papers in the portfolio choice literature have examined linear predictability frameworks based on the idea that simple but flexible Vector Autoregressive (VAR) models can be expanded to produce portfolio allocations that hedge against the bull and bear dynamics typical of financial markets through careful selection of predictor variables that capture business cycles and market sentiment. Yet, a distinct literature exists that shows that non-linear econometric frameworks, such as Markov switching, are also natural tools to compute optimal portfolios arising from the existence of good and bad market states. This paper examines whether and how simple VARs can produce portfolio rules similar to those obtained under a simple Markov switching, by studying the effects of expanding both the order of the VAR and the number/selection of predictor variables included. In a typical stock-bond strategic asset allocation problem for UK data, we compute the out-of-sample certainty equivalent returns for a wide range of VARs and compare these measures of performance with those of non-linear models. We conclude that most VARs cannot produce portfolio rules, hedging demands or (net of transaction costs) out-of-sample performances that approximate those obtained from simple non-linear frameworks.

Suggested Citation

  • Massimo Guidolin & Stuart Hyde, 2014. "Linear predictability vs. bull and bear market models in strategic asset allocation decisions: evidence from UK data," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2135-2153, December.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:12:p:2135-2153
    DOI: 10.1080/14697688.2014.926389
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2014.926389
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2014.926389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:12:p:2135-2153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.