IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2013i8p1427-1444.html
   My bibliography  Save this article

Jump detection with wavelets for high-frequency financial time series

Author

Listed:
  • Yi Xue
  • Ramazan Gen�ay
  • Stephen Fagan

Abstract

This paper introduces a new nonparametric test to identify jump arrival times in high frequency financial time series data. The asymptotic distribution of the test is derived. We demonstrate that the test is robust for different specifications of price processes and the presence of the microstructure noise. A Monte Carlo simulation is conducted which shows that the test has good size and power. Further, we examine the multi-scale jump dynamics in US equity markets. The main findings are as follows. First, the jump dynamics of equities are sensitive to data sampling frequency with significant underestimation of jump intensities at lower frequencies. Second, although arrival densities of positive jumps and negative jumps are symmetric across different time scales, the magnitude of jumps is distributed asymmetrically at high frequencies. Third, only 20% of jumps occur in the trading session from 9:30 AM to 4:00 PM, suggesting that illiquidity during after-hours trading is a strong determinant of jumps.

Suggested Citation

  • Yi Xue & Ramazan Gen�ay & Stephen Fagan, 2013. "Jump detection with wavelets for high-frequency financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1427-1444, July.
  • Handle: RePEc:taf:quantf:v:14:y:2013:i:8:p:1427-1444
    DOI: 10.1080/14697688.2013.830320
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.830320
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.830320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    2. Faria, Gonçalo & Verona, Fabio, 2020. "The yield curve and the stock market: Mind the long run," Journal of Financial Markets, Elsevier, vol. 50(C).
    3. Kilponen, Juha & Verona, Fabio, 2016. "Testing the Q theory of investment in the frequency domain," Bank of Finland Research Discussion Papers 32/2016, Bank of Finland.
    4. Michis, Antonis A., 2014. "Investing in gold: Individual asset risk in the long run," Finance Research Letters, Elsevier, vol. 11(4), pages 369-374.
    5. Faria, Gonçalo & Verona, Fabio, 2018. "The equity risk premium and the low frequency of the term spread," Research Discussion Papers 7/2018, Bank of Finland.
    6. repec:zbw:bofrdp:2016_032 is not listed on IDEAS
    7. Gonçalo Faria & Fabio Verona, 2021. "Time-frequency forecast of the equity premium," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
    8. repec:zbw:bofrdp:2020_006 is not listed on IDEAS
    9. Bruzda Joanna, 2015. "Amplitude and phase synchronization of European business cycles: a wavelet approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 625-655, December.
    10. repec:zbw:bofrdp:2016_029 is not listed on IDEAS
    11. Kilponen, Juha & Verona, Fabio, 2016. "Testing the Q theory of investment in the frequency domain," Research Discussion Papers 32/2016, Bank of Finland.
    12. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    13. repec:zbw:bofrdp:2018_007 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2013:i:8:p:1427-1444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.