IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i7p1051-1064.html
   My bibliography  Save this article

Cycles, determinism and persistence in agent-based games and financial time-series: part I

Author

Listed:
  • J. B. Satinover
  • D. Sornette

Abstract

The Minority Game (MG), the Majority Game (MAJG) and the Dollar Game ($G) are important and closely related versions of market-entry games designed to model different features of real-world financial markets. In a variant of these games, agents measure the performance of their available strategies over a fixed-length rolling window of prior time-steps. These are the Time Horizon MG/MAJG/$Gs (THMG, THMAJG, TH$G). Their probabilistic dynamics may be completely characterized in Markov-chain formulation. Games of both the standard and TH variants generate time-series that may be understood as arising from a stochastically perturbed determinism because a coin toss is used to break ties. The average over the binomially distributed coin tosses yields the underlying determinism. In order to quantify the degree of this determinism and of higher-order perturbations, we decompose the sign of the time-series they generate (analogous to a market price time-series) into a superposition of weighted Hamiltonian cycles on graphs—exactly in the TH variants and approximately in the standard versions. The cycle decomposition also provides a ‘dissection’ of the internal dynamics of the games and a quantitative measure of the degree of determinism. We discuss how the outperformance of strategies relative to agents in the THMG—the ‘illusion of control’—and the reverse in the THMAJG and TH$G, i.e. genuine control, may be understood on a cycle-by-cycle basis. The decomposition offers a new metric for comparing different game dynamics with real-world financial time-series and a method for generating predictors. We apply the cycle predictor to a real-world market, with significantly positive returns for the latter. Part I provides an overview of the paper and its methodologies with an appendix for the mathematical details of the Markov analysis of the THMG, THMAJG and TH$G. Part I also describes the cycle predictor and applies it to real-world financial series. Part II performs further analyses of the cycle decomposition method as applied to the time-series generated by agent-based models to gain insight into the ‘illusion of control’ that certain of these games demonstrate, i.e. the fact that the strategies outperform the agents that deploy them. Part II also illustrates both numerical and analytic methods for extracting cycles from a given time-series and applies the method to a number of different real-world data sets, in conjunction with an analysis of persistence.

Suggested Citation

  • J. B. Satinover & D. Sornette, 2012. "Cycles, determinism and persistence in agent-based games and financial time-series: part I," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1051-1064, February.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:7:p:1051-1064
    DOI: 10.1080/14697688.2012.670260
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.670260
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.670260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Fievet & Didier Sornette, 2018. "Calibrating emergent phenomena in stock markets with agent based models," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:7:p:1051-1064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.