IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i5p791-804.html
   My bibliography  Save this article

Predicting stock price movements: an ordered probit analysis on the Australian Securities Exchange

Author

Listed:
  • Joey Wenling Yang
  • Jerry Parwada

Abstract

Using stocks from a wide range of industry sectors on the Australian Securities Exchange, this paper examines the conditional distribution of intra-day stock prices and predicts the direction of the next price change in an ordered-probit-GARCH framework that accounts for the discreteness of prices. The analysis also incorporates the endogeneity of the time between trades in an ACD framework. Other elements considered include depth, trade imbalance, and volume. The results show that trade imbalance has a positive effect on the probability of price change. Durations have a negative effect. In-sample and out-of-sample forecasting analyses reveal that, in 71% of cases, the system successfully predicts the direction of the subsequent price change.

Suggested Citation

  • Joey Wenling Yang & Jerry Parwada, 2012. "Predicting stock price movements: an ordered probit analysis on the Australian Securities Exchange," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 791-804, October.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:5:p:791-804
    DOI: 10.1080/14697688.2010.494612
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2010.494612
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2010.494612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    2. Dimitrakopoulos, Stefanos & Dey, Dipak K., 2017. "Discrete-response state space models with conditional heteroscedasticity: An application to forecasting the federal funds rate target," Economics Letters, Elsevier, vol. 154(C), pages 20-23.
    3. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    4. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    5. Rasika Yatigammana & Shelton Peiris & Richard Gerlach & David Edmund Allen, 2018. "Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants," Risks, MDPI, vol. 6(2), pages 1-22, May.
    6. Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:5:p:791-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.