IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i1p135-148.html
   My bibliography  Save this article

A probabilistic clustering method for US interest rate analysis

Author

Listed:
  • Foued SaÂdaoui

Abstract

Finite mixture distributions provide a flexible method for high-dimensional data modeling. They are widely used in many disciplines such as astronomy and genetics. One reason for their popularity is their flexibility and straightforward implementation. The interest increase in multivariate mixtures and their applicability when they are combined with clustering methods motivated us to opt for these methods to analyse financial markets' dynamics. An empirical investigation of a set of interest rate time series is performed using a new methodology. The objective of these analyses is to determine the similarities and specificities among the analysed financial time series. Interest rates are subsequently classified according to their behavior. Such a study has been widely exploited for stock price changes using traditional methods, whereas interest rates have been less considered. The major advantage of cluster analysis is that it gives the study more realism, since it represents a functional relationship between independent and dependent variables. The EM algorithm improves clustering in the sense that it considers a stochastic relationship among variables taking missing data into account.

Suggested Citation

  • Foued SaÂdaoui, 2012. "A probabilistic clustering method for US interest rate analysis," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 135-148, November.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:1:p:135-148
    DOI: 10.1080/14697681003591712
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697681003591712
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697681003591712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saâdaoui, Foued & Ben Jabeur, Sami & Goodell, John W., 2022. "Causality of geopolitical risk on food prices: Considering the Russo–Ukrainian conflict," Finance Research Letters, Elsevier, vol. 49(C).
    2. Saâdaoui, Foued, 2023. "Skewed multifractal scaling of stock markets during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Saâdaoui, Foued, 2023. "Randomized extrapolation for accelerating EM-type fixed-point algorithms," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    4. Saâdaoui, Foued, 2018. "Testing for multifractality of Islamic stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 263-273.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:1:p:135-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.