IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i9p1407-1419.html
   My bibliography  Save this article

Basket trading under co-integration with the logistic mixture autoregressive model

Author

Listed:
  • Xixin Cheng
  • Philip L.H. Yu
  • W.K. Li

Abstract

In this paper, we propose a co-integration model with a logistic mixture auto-regressive equilibrium error (co-integrated LMAR), in which the equilibrium relationship among cumulative returns of different financial assets is modelled by a logistic mixture autoregressive time series model. The traditional autoregression (AR) based unit root test (ADF test), used in testing co-integration, cannot give a sound explanation when a time series passes the ADF test. However, its largest root in the AR polynomial is extremely close to, but less than, one, which is most likely the result of a mixture of random-walk and mean-reverting processes in the time series data. With this background, we put an LMAR model into the co-integration framework to identify baskets that have a large spread but are still well co-integrated. A sufficient condition for the stationarity of the LMAR model is given and proved using a Markovian approach. A two-step estimating procedure, combining least-squares estimation and the Expectation-Maximization (EM) algorithm, is given. The Bayesian information criterion (BIC) is used in model selection. The co-integrated LMAR model is applied to basket trading, which is a widely used tool for arbitrage. We use simulation to assess the model in basket trading strategies with the statistical arbitrage feature in equity markets. Data from several sectors of the Hong Kong Hang Seng Index are used in a simulation study on basket trading. Empirical results show that a portfolio using the co-integrated LMAR model has a higher return than portfolios selected by traditional methods. Although the volatility in the return increases, the Sharpe ratio also increases in most cases. This risk--return profile can be explained by the shorter converging period in the co-integrated LMAR model and the larger volatility in the ‘mean-reverting’ regime.

Suggested Citation

  • Xixin Cheng & Philip L.H. Yu & W.K. Li, 2011. "Basket trading under co-integration with the logistic mixture autoregressive model," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1407-1419, July.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:9:p:1407-1419
    DOI: 10.1080/14697688.2010.506445
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2010.506445
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2010.506445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    2. Jordan Mann & J. Nathan Kutz, 2016. "Dynamic mode decomposition for financial trading strategies," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1643-1655, November.
    3. Yu, Philip L.H. & Lu, Renjie, 2017. "Cointegrated market-neutral strategy for basket trading," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 112-124.
    4. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:9:p:1407-1419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.