IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i8p1137-1149.html
   My bibliography  Save this article

Closed-form convexity and cross-convexity adjustments for Heston prices

Author

Listed:
  • Gabriel Drimus

Abstract

We present a new and general technique for obtaining closed-form expansions for prices of options in the Heston model, in terms of Black-Scholes prices and Black-Scholes Greeks up to arbitrary order. We then apply the technique to solve, in detail, the cases for the second-order and third-order expansions. In particular, such expansions show how the convexity in volatility, measured by the Black-Scholes volga, and the sensitivity of delta with respect to volatility, measured by the Black-Scholes vanna, impact option prices in the Heston model. The general method for obtaining the expansion rests on the construction of a set of new probability measures, equivalent to the original pricing measure, and which retain the affine structure of the Heston volatility diffusion. Finally, we extend the method to the pricing of forward-starting options in the Heston model.

Suggested Citation

  • Gabriel Drimus, 2011. "Closed-form convexity and cross-convexity adjustments for Heston prices," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1137-1149.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1137-1149
    DOI: 10.1080/14697688.2010.549835
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697688.2010.549835
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2010.549835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    2. E. Nicolato & D. Sloth, 2014. "Risk adjustments of option prices under time-changed dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 125-141, January.
    3. Kaustav Das & Nicolas Langren'e, 2018. "Closed-form approximations with respect to the mixing solution for option pricing under stochastic volatility," Papers 1812.07803, arXiv.org, revised Oct 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1137-1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.