IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i10p1547-1564.html
   My bibliography  Save this article

Optimal investment under dynamic risk constraints and partial information

Author

Listed:
  • Wolfgang Putschögl
  • Jörn Sass

Abstract

We consider an investor who wants to maximize expected utility of terminal wealth. Stock returns are modelled by a stochastic differential equation with non-constant coefficients. If the drift of the stock returns depends on some process independent of the driving Brownian motion, it may not be adapted to the filtration generated by the stock prices. In such a model with partial information, due to the non-constant drift, the position in the stocks varies between extreme long and short positions making these strategies very risky when trading on a daily basis. To reduce the corresponding shortfall risk, motivated by Cuoco, He and Issaenko [Operations Research, 2008, 56, pp. 358–368.] we impose a class of risk constraints on the strategy, computed on a short horizon, and then find the optimal policy in this class. This leads to much more stable strategies that can be computed for both classical drift models, a mean reverting Ornstein–Uhlenbeck process and a continuous-time Markov chain with finitely many states. The risk constraints also reduce the influence of certain parameters that may be difficult to estimate. We provide a sensitivity analysis for the trading strategy with respect to the model parameters in the constrained and unconstrained case. The results are applied to historical stock prices.

Suggested Citation

  • Wolfgang Putschögl & Jörn Sass, 2011. "Optimal investment under dynamic risk constraints and partial information," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1547-1564.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:10:p:1547-1564
    DOI: 10.1080/14697680903193413
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697680903193413
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903193413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:10:p:1547-1564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.