IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v10y2010i4p401-420.html
   My bibliography  Save this article

Automated trading with boosting and expert weighting

Author

Listed:
  • German Creamer
  • Yoav Freund

Abstract

We propose a multi-stock automated trading system that relies on a layered structure consisting of a machine learning algorithm, an online learning utility, and a risk management overlay. Alternating decision tree (ADT), which is implemented with Logitboost, was chosen as the underlying algorithm. One of the strengths of our approach is that the algorithm is able to select the best combination of rules derived from well-known technical analysis indicators and is also able to select the best parameters of the technical indicators. Additionally, the online learning layer combines the output of several ADTs and suggests a short or long position. Finally, the risk management layer can validate the trading signal when it exceeds a specified non-zero threshold and limit the application of our trading strategy when it is not profitable. We test the expert weighting algorithm with data of 100 randomly selected companies of the S&P 500 index during the period 2003-2005. We find that this algorithm generates abnormal returns during the test period. Our experiments show that the boosting approach is able to improve the predictive capacity when indicators are combined and aggregated as a single predictor. Even more, the combination of indicators of different stocks demonstrated to be adequate in order to reduce the use of computational resources, and still maintain an adequate predictive capacity.

Suggested Citation

  • German Creamer & Yoav Freund, 2010. "Automated trading with boosting and expert weighting," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 401-420.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:4:p:401-420
    DOI: 10.1080/14697680903104113
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680903104113
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903104113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junran Wu & Ke Xu & Jichang Zhao, 2019. "Online reviews can predict long-term returns of individual stocks," Papers 1905.03189, arXiv.org.
    2. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    3. Ash Booth & Enrico Gerding & Frank McGroarty, 2015. "Performance-weighted ensembles of random forests for predicting price impact," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1823-1835, November.
    4. Carè, Rosella & Cumming, Douglas, 2024. "Technology and automation in financial trading: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 71(C).
    5. Caparrini, Antonio & Arroyo, Javier & Escayola Mansilla, Jordi, 2024. "S&P 500 stock selection using machine learning classifiers: A look into the changing role of factors," Research in International Business and Finance, Elsevier, vol. 70(PA).
    6. Massoud Metghalchi & Linda A. Hayes & Farhang Niroomand, 2019. "A technical approach to equity investing in emerging markets," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 389-403, July.
    7. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
    8. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    9. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    10. Bin Li & Steven C. H. Hoi, 2012. "Online Portfolio Selection: A Survey," Papers 1212.2129, arXiv.org, revised May 2013.
    11. Omid Safarzadeh, 2020. "Generating Trading Signals by ML algorithms or time series ones?," Papers 2007.11098, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:4:p:401-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.