Author
Listed:
- Ali A. Shehadeh
- Sadam M. Alwadi
- Mohammad I. Almaharmeh
Abstract
We employ a Boxplot method for detecting and analyzing outlying daily returns of 14 international stock market indices sampled from around the world. The main objective of the paper is to provide an extensive analysis of the main characteristics, features and effects of the detected outlier returns. The results show that from about 4–10% of observations constitute outlying returns with an average of 6%. Conservatively, about 1.4% of return series are extreme outliers. Negative outliers are found more frequent, influential, severe and transmissible. The bulk of detected outliers are found to be in the magnitude of three standard deviations. Also, outliers tend to cluster together, both within individual return series over time and across stock markets. We find a sequential pattern in outlier occurrence within individual return series, and a concurrent pattern across stock markets. Moreover, adjusting for outlying returns leads to a decrease in standard deviation, negative skewness and kurtosis by about 18%, 74% and 69% on average, respectively. We do not find consistent evidence that advanced and well-developed stock markets have less frequent and/or sever outliers. Overall, the results and analysis of the paper provide important considerations about international stock market returns which are relevant to stock investment, portfolio and risk management. The results show that the best (worst) outlying returns which represent about only 1% of the return observations have an enormous effect on the stock return performance and realization.
Suggested Citation
Ali A. Shehadeh & Sadam M. Alwadi & Mohammad I. Almaharmeh, 2022.
"Detecting and Analysing Possible Outliers in Global Stock Market Returns,"
Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2066762-206, December.
Handle:
RePEc:taf:oaefxx:v:10:y:2022:i:1:p:2066762
DOI: 10.1080/23322039.2022.2066762
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oaefxx:v:10:y:2022:i:1:p:2066762. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/OAEF20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.