IDEAS home Printed from https://ideas.repec.org/a/taf/oabmxx/v6y2019i1p1641897.html
   My bibliography  Save this article

Bayesian network considering the clustering of the customers in a hair salon

Author

Listed:
  • Yuki Horita
  • Haruka Yamashita

Abstract

The service industry, which includes hair salons, currently accounts for almost 70% of Japan’s GDP(Gross Domestic Product). Although hair salons are frequently used, over the years, the industry has decreased in size. However, the number of hair-salon facilities and the number of hairdressers have both continued to increase, thus leading to the overcrowding of salons. Consequently, about 90% of hair salons close within 3 years after they first open; this is a significant issue. Today, various business approaches, such as using coupons, have been positively adopted by the Japanese hair-salon industry. However, some customers use a salon only once, while others use them repeatedly. Consequently, the effectiveness of different business measures can vary greatly, so it is necessary to conduct analyses of the various approaches. Therefore, from a management perspective, it is important to use actual data analysis to determine what types of menu items are most effective. In this study, we have identified soft clusters of customers by using an extension of the recency-frequency-monetary (RFM) analysis that is based on soft clustering. We used a Bayesian network to construct a causal model for each class that was obtained in this way. We also proposed a method that uses sensitivity analysis to determine an optimal menu for business measures.

Suggested Citation

  • Yuki Horita & Haruka Yamashita, 2019. "Bayesian network considering the clustering of the customers in a hair salon," Cogent Business & Management, Taylor & Francis Journals, vol. 6(1), pages 1641897-164, January.
  • Handle: RePEc:taf:oabmxx:v:6:y:2019:i:1:p:1641897
    DOI: 10.1080/23311975.2019.1641897
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23311975.2019.1641897
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23311975.2019.1641897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oabmxx:v:6:y:2019:i:1:p:1641897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://cogentoa.tandfonline.com/OABM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.