IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v9y2003i3p303-325.html
   My bibliography  Save this article

Plastic Structural Analysis Under Stochastic Uncertainty

Author

Listed:
  • K. Marti

Abstract

Problems from limit load or shakedown analysis are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g., yield stresses, plastic capacities) and external loadings, the basic stochastic plastic analysis problem must be replaced by an appropriate deterministic substitute problem. Instead of calculating approximatively the probability of failure based on a certain choice of failure modes, here, a direct approach is presented based on the costs for missing carrying capacity and the failure costs (e.g., costs for damage, repair, compensation for weakness within the structure, etc.). Based on the basic mechanical survival conditions, the failure costs may be represented by the minimum value of a convex and often linear program. Several mathematical properties of this program are shown. Minimizing then the total expected costs subject to the remaining (simple) deterministic constraints, a stochastic optimization problem is obtained which may be represented by a “Stochastic Convex Program (SCP) with recourse”. Working with linearized yield/strength conditions, a “Stochastic Linear Program (SLP) with complete fixed recourse” is obtained. In case of a discretely distributed probability distribution or after the discretization of a more general probability distribution of the random structural parameters and loadings as well as certain random cost factors one has a linear program (LP) with a so-called “dual decomposition data” structure. For stochastic programs of this type many theoretical results and efficient numerical solution procedures (LP-solver) are available. The mathematical properties of theses substitute problems are considered. Furthermore approximate analytical formulas for the limit load factor are given.

Suggested Citation

  • K. Marti, 2003. "Plastic Structural Analysis Under Stochastic Uncertainty," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 9(3), pages 303-325, September.
  • Handle: RePEc:taf:nmcmxx:v:9:y:2003:i:3:p:303-325
    DOI: 10.1076/mcmd.9.3.303.24149
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1076/mcmd.9.3.303.24149
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1076/mcmd.9.3.303.24149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:9:y:2003:i:3:p:303-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.