IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v27y2021i1p117-140.html
   My bibliography  Save this article

Crop prediction based on soil and environmental characteristics using feature selection techniques

Author

Listed:
  • A. Suruliandi
  • G. Mariammal
  • S.P. Raja

Abstract

Earlier, crop cultivation was undertaken on the basis of farmers’ hands-on expertise. However, climate change has begun to affect crop yields badly. Consequently, farmers are unable to choose the right crop/s based on soil and environmental factors, and the process of manually predicting the choice of the right crop/s of land has, more often than not, resulted in failure. Accurate crop prediction results in increased crop production. This is where machine learning playing a crucial role in the area of crop prediction. Crop prediction depends on the soil, geographic and climatic attributes. Selecting appropriate attributes for the right crop/s is an intrinsic part of the prediction undertaken by feature selection techniques. In this work, a comparative study of various wrapper feature selection methods are carried out for crop prediction using classification techniques that suggest the suitable crop/s for land. The experimental results show the Recursive Feature Elimination technique with the Adaptive Bagging classifier outperforms the others.

Suggested Citation

  • A. Suruliandi & G. Mariammal & S.P. Raja, 2021. "Crop prediction based on soil and environmental characteristics using feature selection techniques," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 27(1), pages 117-140, January.
  • Handle: RePEc:taf:nmcmxx:v:27:y:2021:i:1:p:117-140
    DOI: 10.1080/13873954.2021.1882505
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2021.1882505
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2021.1882505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:27:y:2021:i:1:p:117-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.